RADSeq Data Analysis

Through STACKS on Galaxy

Yvan Le Bras
Anthony Bretaudeau
Cyril Monjeaud
Gildas Le Corguillé
RAD sequencing: next-generation tools for an old problem

INTRODUCTION

source: Karim Gharbi - edinburgh genomics / University of Edinburgh
The NGS revolution in the GBS world

- Alloenzymes, RAPD, AFLP, Microsatellites, SNP array, [...], NGS

NGS: Low cost sequencing ...
- But it’s **still expensive** to get enough markers on enough samples
- Solution: sampling the genome

- **BEWARE:** the analysis is not cheap!
Sampling the genome

- **RAD**
 - digestion
 - ligation
 - pooling
 - shearing
 - size selection
 - ligation

- **ddRAD**
 - digestion
 - ligation
 - pooling
 - size selection

- **GBS**
 - digestion
 - ligation
 - pooling

- **RRL**
 - digestion
 - pooling
 - size selection
 - ligation

Used by the Roslin institute for their SNP arrays
Sampling the genome

• Original paper: Eric Johnsson, 2008
• Hohenlohe is in the authorship of the first five
Applications

- methods/reviews
- linkage/QTL mapping
- population genomics
- marker discovery
- phylogenetics/geography
- genome assembly
- other
Applications
Classic RAD

Protocols
Single-end RAD

Genomic DNA

restriction site

Illumina read (30-300 bp)

1 restriction site = 2 RAD tags

Baird et al. 2008
Single-end RAD

@M00689:44:000000000-A1N97:1:1101:11642:2590 1:N:0:1
CTGATGCTTGCAGGACGCACCTCCCCCGCGGCTGCGCTAATGTCCCTCGCAGC
+
AAAAAABBBDDDDDDDDGGGGGGGIIHHHHHEHHHHHHBHHIIIIIIHHH@E
Single-end RAD

Hohenlohe et al., PLoS Genetics 2010
Paired-end RAD

Genomic DNA

restriction site

Illumina read 1 (30-300 bp)

Illumina read 2 (30-300 bp)
Paired-end RAD

DNA

read 1 pileup

paired-end contig
Paired-end RAD

C. elegans chromosome I (6.651 Mb - 6.657 Mb)

Davey et al Molecular Ecology 2012
Single vs Paired-end RAD

<table>
<thead>
<tr>
<th></th>
<th>single-end</th>
<th>paired-end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library preparation</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Costs</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Bases per tag</td>
<td>up to 300</td>
<td>up to 300-500</td>
</tr>
<tr>
<td>Design of genotyping assays</td>
<td>limited</td>
<td>good</td>
</tr>
<tr>
<td>Filtering of duplicate reads</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Paralog resolution</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
ddRAD

Protocols
ddRAD

Genomic DNA

restriction site

Illumina read 1 (30-250 bp)

Illumina read 2 (30-250 bp)
ddRAD

~ 500 pb
Paired-end ddRAD
RAD vs ddRAD

A
RAD sequencing

Individual 1
Genomic DNA
Individual 2

- Rare cut site
- Common cut site
- Genomic interval present in library
- Sequence reads

B
double digest RADseq

Individual 1
Genomic DNA
Individual 2

- Rare cut site
- Common cut site
- Genomic interval present in library
- Sequence reads

Peterson et al PLOS One 2012
RAD vs ddRAD

- **classic RAD**: reads between the restriction site and a random site (shearing/sonication)

- **ddRAD**: reads between the 2 restriction sites. So more flexibility on the balance coverage / depth of coverage
Common biases
Because all reads begin with [half of] the restriction site

Consequence:
- The Illumina sequencer have difficulty separating polonies/clusters during the first cycles imaging step

Solution:
- use a set barcodes with different sizes
- mix different experiences which use different restriction enzymes
Biases

Restriction fragment length biases read depth

source: Special features of RAD Sequencing data: implications for genotyping (2013)
Mutations within the recognition sequence of the restriction enzyme

• Consequence:
 • Allele dropout (ADO)
 • overestimates genetic variation both within and between populations

• Solution:
 • Filter any loci that are not represented in all genotyped individuals

Advice/Information from the Edinburgh Genomics

- 250 ng of DNA is needed, 1 μg is asked by the Edinburgh genomics

- High quality DNA if not from 30 to 40% of data can be useless

- PCR: 12 to 14 cycles to reduce the PCR duplicates

- Warning: QiaGen Licence / Patent
PROS / CONS

THE RAD FAMILLY
MOLECULAR ECOLOGY
Molecular Ecology (2014) 23, 1661–1667

NEWS AND VIEWS

MEETING REVIEW
Recent novel approaches for population genomics data analysis

KIMBERLY R. ANDREWS* and GORDON LUUKART†
*School of Biological & Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; †Flathead Lake Biological Station, Fish and Wildlife Genomics Group, University of Montana, Polson, MT 59860, USA

MOLECULAR ECOLOGY
Molecular Ecology (2014) 23, 5937–5942

NEWS AND VIEWS

COMMENT
Demystifying the RAD fad

JONATHAN B. PURITZ,* MIKHAIL V. MATZ,† ROBERT J. TOONEN,‡ JESSE N. WEBER,§ DANIEL I. BOLNICK$ and CHRISTOPHER E. BIRD¶
*Marine Genomics Laboratory, Harte Research Institute, Texas A& M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5869, USA; †Department of Integrative Biology, University of Texas at Austin, 205 W 24th ST C090, Austin, TX 78712, USA; ‡Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, PO Box 1346, Kane‘ohe, HI 96744, USA; §Department of Integrative Biology, Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA; ¶Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5869, USA
mbRAD

- Original RAD (mbRAD Miller *et al.* 2007 and Baird *et al.* 2008)
 - Genomic DNA digestion by 1 restriction enzyme (low frequency cutter)
 - Ligation of barcode containing adapters onto digested 5’ ends
 - Ligated genomic DNA sonication
 - Ligation of a 3’ adapter to the sonicated end
 - Pooling of the samples
 - Size-selection of the library
 - RAD fragments PCR enrichment
mbRAD - PROS

- Random shearing of the 3’ end helps to identify putative PCR duplicates
 - If identical starting position of the paired-end read: duplicate
- Random shearing improves the distribution of coverage
- Random shearing + larger insert size ranges: *de novo* assembled RAD loci are of greater length
 - Critical for identifying function & Gene ontology
- Coverage and quality are fundamental!!!
 - Distinguishing true SNP from sequencing error: if coverage is low, your statistical test will not yield significant results!
mbRAD - CONS

- The most technically challenging and complex protocol!
- Requires non standard lab equipment: sonicator
- Restriction fragment length bias (due to the shearing)
 - Sequencing at different depth
- Strand bias
 - Different genotypes from forward & reverse reads
 - **Solution:** Filter any loci in this case... only possible in 2bRAD
ddRAD

- Double digest RAD protocol (Peterson et al. 2012)
 - Genomic DNA digestion by 2 restriction enzymes (low + high frequency cutter)
 - Ligation of barcode P1 adapters (matching the first restriction site) and P2 adapters (matching second restriction site)
 - Pooling of the samples
 - Size-selection of the library
 - RAD fragments PCR enrichment + second barcode introduction to increase multiplexing potential

- Extremely similar to GBS (Poland et al. 2013)
- Pros & cons associated with ddRAD also relevant to RESTseq (Stolle & Moritz 2013)
ddRAD - PROS

• Greatest degree of customization
 • Depending on the chosen enzymes & the selected range of fragment sizes
 • Allow to have hundreds of SNPs per individual at very low cost or thousands for QTL mapping experiments at moderate cost
 • Flexibility on the balance coverage / depth of coverage

• Examine histograms of digested samples early
 • Identify / exclude excessively frequent fragments (i.e. transposons)
ddRAD - CONS

• Using fragment size selection to tune the quantity of loci can lead to variable representation of some loci
 • This can be minimized using precise selection tool (i.e. Pippin Prep)

• Particularly susceptible to ADO (Arnold et al. 2013)
 • To be considered when performing sensitive population genetic analyses

• Requires the highest quality genomic DNA of all RAD methods
 • Proper fragment ligation relies on completely intact 5’ & 3’ overhangs!

• PCR duplicates cannot be detected
ezRAD

- ezRAD protocol (Toonen et al. 2013)
- Genomic DNA digestion by 2 restriction enzymes (high frequency cutter on the same cut site)

- Commercially available Illumina TruSeq library preparation kit
 - DNA end reparation
 - Ligation of single or dual indexing adapters onto genomic fragments
 - Pooling of samples
 - Size selection of the library

- RAD fragments PCR enrichment, or not, depending on the Illumina kit
ezRAD - PROS

• Illumina TruSeq kit
 • Extensive manual, customer support & guarantee
 • Probably the simplest path to obtain RAD data for small lab without experience / equipment / resources to develop in-house RAD capability

• Combined with an Illumina PCR-Free TruSeq kit, ezRAD is the only RAD protocol that can bypass all potential PCR bias
ezRAD - CONS

- Illumina TruSeq kit
 - Simplicity & uniformity but expensive
 - However can be used with $\frac{1}{2}$ & $\frac{1}{3}$ reaction volumes

- All ezRAD reads start with the same four GATC bases
 - The first 4-5 nucleotides of Read 1 are used to discriminate between adjacent clusters
 - If always the same 4 first bases, difficulty to discriminate the different samples
2bRAD

- 2bRAD protocol (Wang *et al.* 2012)
 - Genomic DNA digestion by 1 restriction enzyme (36-bp fragments excision recognition site + adjacent 5’ & 3’ base pairs)
 - Ligation of dual barcode adapters
 - Agarose gel target band excision after PCR enrichment
 - No intermediate purification stages
 - No size-selection
2bRAD - PROS

• Extreme protocol simplicity & cost-efficiency
 • No intermediate purification stages
 • No need for special instrumentation (only PCR + standard agarose gel)

• Lack of biases due to fragment size selection
 • All endonuclease recognition sites can be sampled
2bRAD - CONS

- Difficulties to map 36 bp tags in an unambiguously way
 - But works well in no or moderately duplicated genomes (i.e. Wang et al 2012 on Arabidopsis)

- 2bRAD fragments cannot be used to build genome contigs

- 2bRAD fragments are less likely to be cross-mappable across large genetic distances, such as across different species
Conclusions

• Most important considerations when selecting a particular RAD protocol are
 • The facilities & the molecular experience of the researcher applying the approach
 • The biology of the organisms
 • The hypotheses being tested

• All RAD protocols are powerful tools for SNP discovery & genotyping of nonmodel species

• It is important to learn about pitfalls inherent to each method & how to adress them
Main Bioinformatics pipelines

• **STACKS**
 - Website: http://catchenlab.life.illinois.edu/stacks/
 - mbRAD, ddRAD, ezRAD & 2bRAD?
 - STACKS does not handle INDELS, so any loci near an INDEL is lost
 - STACKS does not call SNPs from paired end reads natively, and does especially poorly with paired end fragments that are not of a random length (e.g., ddRAD and ezRAD)

• **ddDocent**
 - Website: https://ddocent.wordpress.com/ddocent-pipeline-user-guide/
 - ddRAD & ezRAD

• **PyRAD**
 - Website: http://dereneaton.com/software/pyrad/
 - mbRAD, ddRAD, PE-ddRAD, GBS, PE-GBS, EzRAD, PE-EzRAD, 2B-RAD
 - use of an alignment-clustering method (*vsearch*)

• **2bRAD (Wang et al 2012)**
 - *de novo*: https://github.com/z0on/2bRAD_denovo
 - With reference genome: https://github.com/z0on/2bRAD_GATK
 - 2bRAD

http://catchenlab.life.illinois.edu/stacks
Stacks

denovo_map pipeline
ustacks
cstacks
sstacks
Stacks

ref_map pipeline

pstacks

cstacks

sstacks

.C. elegans chromosome I (6.651 Mb - 6.657 Mb)

Davey et al. Molecular Ecology 2012
Stacks

Galaxy Project

SOFTWARES
Today: hands on

• SNP detection
 • On 2 parents of a family

• Genetic map
 • On a family with 93 offsprings

• Mini-contig assembly
 • Paired end data

• Population genomics
 • Without reference genome
 • With reference genome
Today: hands on

- SNP detection
 - On 2 parents of a family
- Genetic map
 - On a family with 93 offsprings
- **Mini-contig assembly**
 - Paired end data
- Population genomics
 - Without reference genome
 - With reference genome
Today: hands on

- SNP detection
 - On 2 parents of a family
- Genetic map
 - On a family with 93 offsprings
- Mini-contig assembly
 - Paired end data
- **Population genomics**
 - **Without reference genome**
 - With reference genome
Goals

• Learning to analyse NGS data from Reduce-Representation Libraries (RRL)
• Learning to use
 • Galaxy
 • The STACKS pipeline
• Learning
 • Raw Illumina RAD preparation
 • Use a reference genome
 • Assembly of RAD loci
 • Detection of SNPs, genotypes and haplotypes determination
 • Population genetics statistics
Datasets and tools

• Datasets used during Julian Catchen training sessions
• Stickleback dataset from *Hohenlohe et al. 2010*
• Data cleaning and analyses with Galaxy, the Stacks pipeline and BWA.
• All data produced with Illumina GAII or HiSeq2000.
• Open Source software
Merci de votre attention

yvan.le-bras@mnhn.fr
Merci de votre attention

RADseqGCC2016 page
http://tinyurl.com/radseqgcc2016

Toulouse Sigenae Galaxy server
http://sigenae-workbench.toulouse.inra.fr/galaxy/

GenOuest Galaxy instance
http://galaxy.genouest.org