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Classical machine-learning example

training, ~60,000
cases

MNIST Samples

test, ~ 10,000 cases
NSRS 2
072486
13959
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Can we transfer it to 3D protein structures?

training, ~ 10,000 structures test
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Yes we can!

Feature extraction

structures features
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Classification (or regression)

nonnative
vectors
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mi_in A .Regularization(f) + Misclassification(f(r), v©(r))
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Deep Learning

Feature maps

f.maps

Convolutions Subsampling Convolutions Subsampling Fully connected

@ Multiple layers that progressively extract features on different scales

@ They can learn a hierarchy of representations that correspond to different levels of

abstraction

@ Deep learning is effective at problems with hierarchical and structured data. Deep learning

IS not particularly suited to problems with unstructured data

Sergei Grudinin

[72]
i)
o
®
o
£
S
<

SD-IA et biologie, Dec 2, 2020




What is the right protein abstraction?

Sequence / MSA profile Secondary structure elements Distance / HB / Contact matrix Molecular graph
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many classical ML methods state-of-the-art structure prediction Fout et al. NIPS 2017; Ingraham et al. NIPS
methods 2019; Igashov et al 2020
Set of balls / Point cloud Gaussian mixture Molecular surface 3D tessellation
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Derevyanko et al. Bioinformatics 2018; Pages Correia. Bronstein et al. Nat Met 2020 lgashov et al. Bioinformatics (submitted)

classical statistical potentials i ,
P et al. Bioinformatics 2019; 2020
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CASP 13 : DeepCOV: Analysing Residue Covariation using FCNs

THE

FRANCIS
CRICK

Input layer (441, m,m) | INSTITUTE
+ /
2D Convolutional layer
(128 1x1 filters) (128, m, ’7/
Maxout layer + /
Feature max-pooling 64, mf m)
Convolutional Maxout Layer
Intermediate (dimensionality reduction to
Convolutional
i oo 64 channels)
Output layer 2D Coav::u:::r?llayer y (1, m, m)

Input: 21x21
covariance
feature
channels

|

covariance between MSA columns
7 j 8-10 Padded

..... EEEANVVLTGT ......WRYLKGKDIVTHEILLDGG..... Convolutional layers
..... EEEANVVLTGT .e....WRYLKGREIVTNDILLDGG. .... 5x5x64 Filters

........... YLKGKEVVTNDILVDGG. . ... Relu Activation

........... YLKGKDLVARESLLDGG. . . . .
........... YLKGREVVTRDVLLDGG. . . . . BatchNorm

Output:
Contact
Probability Map

from Prof. David Jones, UCL Dept. of Computer Science & The Francis Crick Institute, http://predictioncenter.org



http://predictioncenter.org

CASP 13 : Revolution of Depth

28.2
25.8

152 layers |

\ 16.4

\ 11.7
[ 22 layers 19 layers

\\ 6.7 7.3
3.57 l I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14  [ILSVRC'14 [LSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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CASP 13 : Key Developments

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 :

32x32 S2: f. maps C5: layer F6 layer OUTPUT

r \\ LeCun et al. Proc of the IEEE, 1998

Full conr#echon Gaussmn connections
Convolutions Subsampling Convolutlons Subsampllng Full connection

e

<-‘\

—

sigmoid " RelLU

® 1989, 1998, Yann LeCun's back-propagation

and convolutional kernels |o(z)= | R(z) =maz(0, 2)

0.6

@ 2000, Hinton’s Layer by Layer training of Deep
Belief Nets

0.2

@ 2010, Acceleration by GPUs (CUDA/theano)

@ 2011, Rectified Linear Units this is all we weight mﬂh
needed to F(x) lrelu
@ 2015, Batch Normalization train deep s | | x.
nets! identity
® 2016, Residual nets F(x) + x

relu
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CASP14

100
—— JS€ Of metagenomics and structural templates
N E\@ No DCA/ PCA coevolution - raw MSA profiles
a°
‘g,'; @ Attention networks - learn dynamic ‘soft’ molecular graphs. Pass messages along edges
@ 60 that have matching ‘keys’
= CASP
% other@ Proper use of 3D geometry, stereochemistry, equivariance, and local 3D frames
© 40—
r— - CASP® Uncertainty prediction. The same idea used by Rosetta / Baker team
< )49 [ 6yaf
O gg— CASPg Use of ‘distograms’ instead of contacts and histograms )3.3 GDT
= CASF ihesin tip)
— CASP® Training of one model takes ~200 GPUs (128 TPUs and lots of memory!) for several
OF weeks. This must be multiplied by ~100. So, we get ~ 10 Jean Zay running for 1 month.
Difficulty of protein structure prediction ® Computational prediction
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ML in structural biology

The amount of data (genomic and structural)
grows faster than our computational resources Bases

10,000,000,00... —— GenBank

— WGS

(whole genome
sequencing)

1,000,000,000,...
100,000,000,000
10,000,000,000
Moore’s Law
1,000,000,000
100,000,000

10,000,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
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ML in structural biology

The amount of data (genomic and structural)
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

SAM - FFT-accelerated AnAnasS - analytical
symmetry assembler analyser of symmetries

NOLB NMA method

1. Geomemc‘ features 2. Projection

non-native " 7" ) .
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Docking and fitting
Pepsi-SAXS / SANS methods Pipeline for KB-potentials methods
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ML in structural biology

Do we understand physics?

The amount of data (genomic and structural) no yes
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

We need to develop novel machine-learning
approaches specifically adapted to our data (rather
than adapt the data to existing ML and DL approaches)

M. Karasikov et al.
Bioinformatics 2019, btz122

Weighted sum

G. Pages et al. Bioinformatics
Output 2019, bty1037

Branches
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ML in structural biology

The amount of data (genomic and structural)
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

We need to develop novel machine-learning
approaches specifically adapted to our data (rather
than adapt the data to existing ML and DL approaches)

DL models are interpretable!

G. Pages & S. Grudinin, unpublished
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ML in structural biology

@
The amount of data (genomic and structural) ‘.0
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We constantly need better and faster algorithms for o

integrating growing amount of data e

P

We need to develop novel machine-learning Z
approaches specifically adapted to our data (rather

than adapt the data to existing ML and DL approaches)
KORP-PL — the state-of-the-art virtual screening learning spherical kernels on 3D graphs,

potential, Kadukova et al. Bioinformatics 2020 lgashov et al. arXiv 2020

DL models are interpretable!

We can use better abstraction and better geometry!

o, A

convolutional neural networks on irregular 3D tessellations,
lgashov et al., Bioinformatics (submitted) 2020
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ML in structural biology

The amount of data (genomic and structural)
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

We need to develop novel machine-learning
approaches specifically adapted to our data (rather
than adapt the data to existing ML and DL approaches)

DL models are interpretable!

We can use better abstraction and better geometry!

Current data allows to reconstruct and/or learn
structural heterogeneity and motion manifolds

Sergei Grudinin

near future

automatic selection of representation
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ML in structural biology

The amount of data (genomic and structural)
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

We need to develop novel machine-learning
approaches specifically adapted to our data (rather
than adapt the data to existing ML and DL approaches)

DL models are interpretable!

We can use better abstraction and better geometry!

Current data allows to reconstruct and/or learn
structural heterogeneity and motion manifolds

Which leads to predicting protein function!

Sergei Grudinin

because function is linked with
the shape and the motion!
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The Future goals

The amount of data (genomic and structural)
grows faster than our computational resources

We constantly need better and faster algorithms for
integrating growing amount of data

We need to develop novel machine-learning
approaches specifically adapted to our data (rather
than adapt the data to existing ML and DL approaches)

DL models are interpretable!

We can use better abstraction and better geometry!

Current data allows to reconstruct and/or learn
structural heterogeneity and motion manifolds

Which leads to predicting protein function!

Sergei Grudinin
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With the ultimate goal of routine
computational protein design
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Side notes : Physics-aware ML

@ Example 1 - long-range interactions

@ Divergence theorem, we can learn on a manifold

@ Example 2 - message-passing algorithms

@ FMM was invented in 1987, and can be reused in
learning on graphs and point clouds

’

@ Example 3 - rotational invariance / equivariance K)‘ér 9 Y(8,0) R ><<'\{1Zr’ ’Y3(9 Q')
y
y

@ Can be represented using Spherical Harmonics and
Wigner rotation matrices I=C.ge o +C31)‘+C30~ +G.18 +C3-2A+C3-37~

(o, 1) 1) = LX) LD 5.0) [ ¥ @)
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Questions / Conclusions

@ What should be the protein abstraction description?

@ can we combine multiple descriptions (graph + secondary structure elements, etc)?
@ Should we invest more research into coevolution?

@ Will it be useful on a long term” Can we do protein design with it?

® How will we predict new folds or viral folds?

@ | believe we are at a point when we can use symbolic gradients to refine the structure. Is it the end
of MD? Any comments, observations?

@ Does it make sense (from the thermodynamic point of view) to predict the quality of a single
model? Folding/docking is a thermodynamic process. Should we invest into ensemble learning?

@ Please think of physics and geometry! It can drastically reduce the number of model parameters!

® We should exchange more with ML people, but they would require better benchmark sets - look,
e.g., at QMS.

® We need better and more meaningful labels (like QM potential energy in QM8).

@ Can we develop unsupervised label-free methods?

® We should try developing specific DL methods for our data without reusing standard architectures,
because our data is unique.

@ Learning on motion manifolds and protein design is right there!
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Mikhail Karasikov,; '" Alexandre Hoffmann, PhD, Maria Kadukova, PhD,
PhD, DL guru ML intern Fourier-based methods ML for drug design guru
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ML / DL intern DL intern DL intern DL intern visiting researcher
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